1932

Abstract

Applying dimensional analysis to the Higgs mass leads one to predict new physics interactions that generate this mass at a scale of the order of 1 TeV. The question of what these interactions could be is known as the gauge hierarchy problem. Resolving this question has been a central aim of particle physics for the past few decades. Traditional solutions introduce new particles with masses below 1 TeV, but that prediction is now challenged by experiment. In this article, I review recent new approaches to the problem that do not require new particles at the TeV mass scale. I first discuss the relaxation approach, whereby the Higgs mass is made dynamical and is small at the absolute minimum of its potential. I then discuss the historical approach, whereby details about inflation and/or reheating after inflation cause the Higgs mass to be smaller than otherwise expected. Finally, I discuss solutions that use conditional probability, whereby conditioning on the fact that the cosmological constant is small automatically leads one to select vacua where the Higgs mass is also small.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102422-080830
2023-09-25
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/nucl/73/1/annurev-nucl-102422-080830.html?itemId=/content/journals/10.1146/annurev-nucl-102422-080830&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Weinberg S. Rev. Mod. Phys. 61:1 1989.)
    [Google Scholar]
  2. 2.
    Martin SP. Advanced Series on Directions in High Energy Physics, Vol. 18: Perspectives on Supersymmetry GL Kane 198. Singapore: World Scientific 1998.)
    [Google Scholar]
  3. 3.
    Dine M. Flavor Physics for the Millennium: Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2000) JL Rosner 34969. Singapore: World Scientific 2001.)
    [Google Scholar]
  4. 4.
    Murayama H. Proceedings of the ICTP Summer School in Particle Physics, Vol. 2296335. Trieste, Italy: Int. Cent. Theor. Phys 2000.)
    [Google Scholar]
  5. 5.
    Luty MA Physics in D4: Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2004) J Terning, CEM Wagner, D Zeppenfeld 495582. Singapore: World Scientific 2006.)
    [Google Scholar]
  6. 6.
    Polchinski J. The Quantum Structure of Space and Time: Proceedings of the 23rd Solvay Conference in Physics D Gross, M Henneaux, A Sevrin 21536. Singapore: World Scientific 2007.)
    [Google Scholar]
  7. 7.
    Bousso R. Gen. Rel. Grav. 40:607 2008.)
    [Google Scholar]
  8. 8.
    Giudice GF Perspectives on LHC Physics G Kane, A Pierce 15578. Singapore: World Scientific 2008.)
    [Google Scholar]
  9. 9.
    Giudice GF. Proc. Sci. EPS-HEP2013163 2013.)
    [Google Scholar]
  10. 10.
    Burgess CP Post-Planck Cosmology: Lecture Notes of the Les Houches Summer School, Vol. 100 C Deffayet, et al. 14997. Oxford, UK: Oxford Univ. Press 2015.)
    [Google Scholar]
  11. 11.
    Wells JD. Stud. Hist. Philos. Sci. B 49:102 2015.)
    [Google Scholar]
  12. 12.
    Wells JD Synthese 194:477 2017.)
    [Google Scholar]
  13. 13.
    Hook A. Proc. Sci. TASI2018:004 2019.)
    [Google Scholar]
  14. 14.
    Cohen T. Proc. Sci. TASI2018:011 2019.)
    [Google Scholar]
  15. 15.
    Burgess CP. Introduction to Effective Field Theory Cambridge, UK: Cambridge Univ. Press 2020.)
    [Google Scholar]
  16. 16.
    Craig N. arXiv:2205.05708 [hep-ph] 2022.)
  17. 17.
    Draper P, Garcia IG, Reece M. arXiv:2203.07624 [hep-ph] 2022.)
  18. 18.
    Berglund P et al. arXiv:2202.06890 [hep-th] 2022.)
  19. 19.
    Agrawal P et al. arXiv:2203.08026 [hep-ph] 2022.)
  20. 20.
    Blinov N et al. arXiv:2203.07218 [hep-ph] 2022.)
  21. 21.
    Batell B, Low M, Neil ET, Verhaaren CB. arXiv:2203.05531 [hep-ph] 2022.)
  22. 22.
    Weisskopf V. Z. Phys. 89:27 1934.). Erratum Z. Phys. 90:817 1934.)
    [Google Scholar]
  23. 23.
    Weisskopf VF. Phys. Rev. 56:72 1939.)
    [Google Scholar]
  24. 24.
    Wilson KG. Phys. Rev. D 3:1818 1971.)
    [Google Scholar]
  25. 25.
    Weinberg S. Phys. Rev. D 13:974 1976.). Addendum Phys. Rev. D 19:1277 1979.)
    [Google Scholar]
  26. 26.
    Susskind L. Phys. Rev. D 20:2619 1979.)
    [Google Scholar]
  27. 27.
    ’t Hooft G NATO Sci. Ser. B 59:135 1980.)
    [Google Scholar]
  28. 28.
    Veltman MJG. Acta Phys. Polon. B 12:437 1981.)
    [Google Scholar]
  29. 29.
    Aad G et al.(ATLAS Collab.) Eur. Phys. J. C 80:737 2020.)
    [Google Scholar]
  30. 30.
    Aaboud M et al.(ATLAS Collab.) J. High Energy Phys. 1806:107 2018.)
    [Google Scholar]
  31. 31.
    Sirunyan AM et al.(CMS Collab.) Eur. Phys. J. C 81:3 2021.)
    [Google Scholar]
  32. 32.
    Sirunyan AM et al.(CMS Collab.) Eur. Phys. J. C 80:3 2020.)
    [Google Scholar]
  33. 33.
    Aad G et al.(ATLAS Collab.) Eur. Phys. J. C 80:123 2020.)
    [Google Scholar]
  34. 34.
    Aad G et al.(ATLAS Collab.) Phys. Rev. D 104:112010 2021.)
    [Google Scholar]
  35. 35.
    CMS Collab Report CMS-SUS-21-002/CERN-EP-2022-031. CERN Geneva: 2022.)
  36. 36.
    CMS Collab Nature 607:60 2022.)
    [Google Scholar]
  37. 37.
    ATLAS Collab Nature 607:52 2022.)
    [Google Scholar]
  38. 38.
    Dawson S, Meade P, Ojalvo I, Vernieri C. arXiv:2209.07510 [hep-ph] 2022.)
  39. 39.
    Arkani-Hamed N, Dimopoulos S, Dvali GR. Phys. Lett. B 429:263 1998.)
    [Google Scholar]
  40. 40.
    Antoniadis I, Arkani-Hamed N, Dimopoulos S, Dvali GR. Phys. Lett. B 436:257 1998.)
    [Google Scholar]
  41. 41.
    Randall L, Sundrum R. Phys. Rev. Lett. 83:3370 1999.)
    [Google Scholar]
  42. 42.
    Randall L, Sundrum R. Phys. Rev. Lett. 83:4690 1999.)
    [Google Scholar]
  43. 43.
    Agrawal P et al. arXiv:2203.07533 [hep-th] 2022.)
  44. 44.
    Weinberg S. Phys. Rev. Lett. 59:2607 1987.)
    [Google Scholar]
  45. 45.
    Agrawal V, Barr SM, Donoghue JF, Seckel D. Phys. Rev. D 57:5480 1998.)
    [Google Scholar]
  46. 46.
    Hall LJ, Pinner D, Ruderman JT. J. High Energy Phys. 1412:134 2014.)
    [Google Scholar]
  47. 47.
    Harnik R, Kribs GD, Perez G. Phys. Rev. D 74:035006 2006.)
    [Google Scholar]
  48. 48.
    Arkani-Hamed N, Cohen AG, Georgi H. Phys. Lett. B 513:232 2001.)
    [Google Scholar]
  49. 49.
    Arkani-Hamed N, Cohen AG, Katz E, Nelson AE. J. High Energy Phys. 0207:034 2002.)
    [Google Scholar]
  50. 50.
    Schmaltz M, Tucker-Smith D. Annu. Rev. Nucl. Part. Sci. 55:229 2005.)
    [Google Scholar]
  51. 51.
    Chacko Z, Goh H-S, Harnik R. Phys. Rev. Lett. 96:231802 2006.)
    [Google Scholar]
  52. 52.
    Craig N, Knapen S, Longhi P. Phys. Rev. Lett. 114:061803 2015.)
    [Google Scholar]
  53. 53.
    Contino R et al. Phys. Rev. D 96:095036 2017.)
    [Google Scholar]
  54. 54.
    Burdman G, Chacko Z, Goh H-S, Harnik R. J. High Energy Phys. 0702:009 2007.)
    [Google Scholar]
  55. 55.
    Cohen T, Craig N, Lou HK, Pinner D. J. High Energy Phys. 1603:196 2016.)
    [Google Scholar]
  56. 56.
    Craig N, Katz A, Strassler M, Sundrum R. J. High Energy Phys. 1507:105 2015.)
    [Google Scholar]
  57. 57.
    Chacko Z, Curtin D, Verhaaren CB. Phys. Rev. D 94:011504 2016.)
    [Google Scholar]
  58. 58.
    Kaplan DB, Georgi H. Phys. Lett. B 136:183 1984.)
    [Google Scholar]
  59. 59.
    Giudice GF, Grojean C, Pomarol A, Rattazzi R. J. High Energy Phys. 0706:045 2007.)
    [Google Scholar]
  60. 60.
    Panico G, Wulzer A. The Composite Nambu-Goldstone Higgs Cham, Switz: Springer 2016.)
    [Google Scholar]
  61. 61.
    Contino R. Physics of the Large and the Small: Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2009) C Csaki, S Dodelson 235306. Singapore: World Scientific 2011.)
    [Google Scholar]
  62. 62.
    Hook A. Phys. Rev. Lett. 120:261802 2018.)
    [Google Scholar]
  63. 63.
    Kolb EW, Turner MS. The Early Universe Boca Raton, FL: CRC 1990.)
    [Google Scholar]
  64. 64.
    Arkani-Hamed N et al. Phys. Rev. Lett. 117:251801 2016.)
    [Google Scholar]
  65. 65.
    Graham PW, Kaplan DE, Rajendran S. Phys. Rev. Lett. 115:221801 2015.)
    [Google Scholar]
  66. 66.
    Arvanitaki A et al. J. High Energy Phys. 1705:71 2017.)
    [Google Scholar]
  67. 67.
    Arkani-Hamed N, D'Agnolo RT, Kim HD Phys. Rev. D 104:095014 2021.)
    [Google Scholar]
  68. 68.
    Dienes KR. Nucl. Phys. B 611:146 2001.)
    [Google Scholar]
  69. 69.
    Abel S, Dienes KR. Phys. Rev. D 104:126032 2021.)
    [Google Scholar]
  70. 70.
    Craig N, Koren S J. High Energy Phys. 2003.37 2020.)
    [Google Scholar]
  71. 71.
    Arkani-Hamed N, Harigaya K J. High Energy Phys. 2109:25 2021.)
    [Google Scholar]
  72. 72.
    Arkani-Hamed N, Motl L, Nicolis A, Vafa C. J. High Energy Phys. 0706:060 2007.)
    [Google Scholar]
  73. 73.
    Cheung C, Remmen GN. Phys. Rev. Lett. 113:051601 2014.)
    [Google Scholar]
  74. 74.
    Craig N, Garcia Garcia I, Koren S J. High Energy Phys. 1909:81 2019.)
    [Google Scholar]
  75. 75.
    Geller M, Hochberg Y, Kuflik E. Phys. Rev. Lett. 122:191802 2019.)
    [Google Scholar]
  76. 76.
    Kartvelishvili G, Khoury J, Sharma A. J. Cosmol. Astropart. Phys. 2102:028 2021.)
    [Google Scholar]
  77. 77.
    Csáki C, D'Agnolo RT, Geller M, Ismail A Phys. Rev. Lett. 126:091801 2021.)
    [Google Scholar]
  78. 78.
    Giudice GF, McCullough M, You T J. High Energy Phys. 2110:93 2021.)
    [Google Scholar]
  79. 79.
    Touboul P et al.(MICROSCOPE Collab.) Phys. Rev. Lett. 129:121102 2022.)
    [Google Scholar]
  80. 80.
    Hardy E, Lasenby R J. High Energy Phys. 1702:33 2017.)
    [Google Scholar]
  81. 81.
    Alekhin S et al. Rep. Prog. Phys. 79:124201 2016.)
    [Google Scholar]
  82. 82.
    Flacke T et al. J. High Energy Phys. 1706:50 2017.)
    [Google Scholar]
  83. 83.
    Batell B, Giudice GF, McCullough M J. High Energy Phys. 1512:162 2015.)
    [Google Scholar]
  84. 84.
    Espinosa JR et al. Phys. Rev. Lett. 115:251803 2015.)
    [Google Scholar]
  85. 85.
    Choi K, Im SH. J. High Energy Phys. 1601:149 2016.)
    [Google Scholar]
  86. 86.
    Matsedonskyi O. J. High Energy Phys. 1601:63 2016.)
    [Google Scholar]
  87. 87.
    Hook A, Marques-Tavares G. J. High Energy Phys. 1612:101 2016.)
    [Google Scholar]
  88. 88.
    Evans JL, Gherghetta T, Nagata N, Thomas Z. J. High Energy Phys. 1609:150 2016.)
    [Google Scholar]
  89. 89.
    Choi K, Kim H, Sekiguchi T. Phys. Rev. D 95:075008 2017.)
    [Google Scholar]
  90. 90.
    Batell B, Fedderke MA, Wang L-T J. High Energy Phys. 1712:139 2017.)
    [Google Scholar]
  91. 91.
    Wang S-J. Phys. Rev. D 99:023529 2019.)
    [Google Scholar]
  92. 92.
    Fonseca N, Morgante E, Servant G. J. High Energy Phys. 1810:20 2018.)
    [Google Scholar]
  93. 93.
    Arvanitaki A et al. Phys. Rev. D 97:075020 2018.)
    [Google Scholar]
  94. 94.
    Jackson Kimball DF et al. Phys. Rev. D 97:043002 2018.)
    [Google Scholar]
  95. 95.
    Banerjee A et al. Commun. Phys. 3:1 2020.)
    [Google Scholar]
  96. 96.
    Yeh T-H, Shelton J, Olive KA, Fields BD. J. Cosmol. Astropart. Phys. 2210:046 2022.)
    [Google Scholar]
  97. 97.
    Dvorkin C et al. arXiv:2203.07943 [hep-ph] 2022.)
  98. 98.
    Archer-Smith P, Linthorne D, Stolarski D. Phys. Rev. D 101:095016 2020.)
    [Google Scholar]
  99. 99.
    Tito D'Agnolo R, Teresi D J. High Energy Phys. 2202:23 2022.)
    [Google Scholar]
  100. 100.
    Tito D'Agnolo R, Teresi D. Phys. Rev. Lett. 128:021803 2022.)
    [Google Scholar]
  101. 101.
    Csaki C, Ismail A, Ruhdorfer M, Tooby-Smith J. arXiv:2210.02456 [hep-ph] 2022.)
/content/journals/10.1146/annurev-nucl-102422-080830
Loading
/content/journals/10.1146/annurev-nucl-102422-080830
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error